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This report summarizes the last nine years research accomplishments under Cooperative

Agreement NCC-2650 between NASA, Ames Research Center and SETI Institute. Four Major
research tasks are conducted:

1. Gas chromatography column development,

2. Pyrosensor devilment,

3. Micro-machining gas chromatography instrument development,

4. Amino acid analysis and high molecular weight polyamino acid synthesis under prebiotic

conditions. The following describes these results.

I. Gas Chromatography Column Development

There are two major objectives in this task. The first is to develop and produce advanced columns and

column packing materials having high reproducibility and high performance for flight GC instrument

applications. The second objective is to investigate novel column geometries, i.e., Porous Layer Open

Tube (PLOT), hollow fiber, micropacked columns, that are more appropriate for flight than those

currently available. In addition, the factors affecting separation such as surface area, pore size, and

solubility of the polymer surface, will be characterized in order to improve the GC separation. The

ultimate goal of this task is to maximize column resolving power while minimizing the weight of the

column components, that is, to separate more gases with shorter columns and/or fewer columns while

reducing the amount of He required (lower carrier gas flow rates) and reducing the power requirements

(lower operating temperatures).

Much progress has been made in this task. A porous silicone polymer column was developed which

could separate a wider range of gases than either the nonpolar or polar columns described above. Also,

bonded stainless steel PLOT columns with high separation efficiencies and low flow rate (-3 cc/min)

requirements, have been developed by in-situ polymerization. In addition, initial results have

demonstrated that the preparation of micro-packed columns is feasible. These developments will be

described in more detail in the following subsections.

A. Silicone polymer stationary phases

Columns packed with liquid phases on solid supports provide good separation of polar as well as

nonpolar compounds. However, the liquid phase bleeds (outgasses) excessively from these columns,

making them unsuitable for use with such highly sensitive detectors such as the Metastable Ionization

Detector (MID). As an aIternative to this type of column, solid porous silicone polymers were

synthesized and used to separate polar compounds, such as amines and alcohols, as well as nonpolar

compounds, such as alkanes, alkenes, and alkynes.

The solid porous silicone polymers are synthesized by a condensation polymerization reaction. In

general, the polymerization by trichlorosilane condensation produces low or noncross-linking polymers

which are usually soluble in organic solvents. In order to make highly cross-linked polymers, vinyl

groups were included by means of a free radical polymerization reaction. The condensation

polymerization process and free radical polymerization ofvinyltriethoxysilane and

octadecyltrichlorosilane formed highly cross-linked polymers not soluble in most solvents. Several

polymerizations with various mole ratios of vinyltriethoxysilane and octadecyltrichlorosilane were

carried out. The copolymer product obtained with a 2/1 mole ratio provided the best balance of polar





andnon-polargroups. Thispolymerprovidedgoodseparationandpeaksymmetryfor manypolarand
nonpolarcompoundsasillustratedin Figures1a-e.

B. Porous layer open tubular (PLOT) columns

1.Dynamic Coating Method

a. Divinyl Benzene Polymer

Porous Layer Open Tubular (PLOT) columns have advantages over packed or wall-coated gas

chromatography columns such as lower flow rates, lower operating temperatures, and less column

bleeding. An important advantage of the PLOT column over a packed column is that much lower

sample concentrations (at the parts per billion level) and lower sample sizes can be analyzed.

Divinyl benzene (DV-B) PLOT column for the separation of the light gases and PLOT columns are

made by static coating procedures, dynamic coating procedures, or a combination of the two. In

general, the first step is the polymerization of monomers; the polymers are then sieved to select the

proper mesh size for coating the columns. The coating methods are complicated and require special

expertise and unique facilities. These difficulties make the manufacturing process costly which has

limited the use of PLOT columns. The method developed by us combines the polymerization and the

column coating into one step. This in-situ polymerization results in a straight-forward preparation of a

PLOT metal tube column. The in-situ polymerization procedure developed by us involves placing the

divinylbenzene monomer and solvent in a coiled metal tube, capping the tube ends and placing the

coiled tubing in an oven equipped with a mechanical rotation rod. The polymerization process was

carried out at 80°C while the column was being rotated.

An important aspect of this research was finding a solvent system that provided suspension

polymerization of the monomer and prevented the resultant polymer from swelling, which tended to

form column plugs. Only with methanol did the polymerization and wall coating occur in a way such

that the excess dilutents were easily eluted from the column, leaving the polymer coated on the inside

of the tube. Also, we found that slower rotation speeds were more effective for uniform coating of the

tube; higher rotation rates led to column plugging.

The DVB PLOT columns, prepared by in-situ polymerization, efficiently separated the light gases. As

illustrated in Figure 2, as the divinylbenzene concentration increases, the separation efficiency also

increases. At a divinylbenzene concentration of 25%, the separation efficiency of the PLOT column is

almost as good as that of a packed column. Four columns were prepared and tested for reproducibility.

For N20, the resulting capacity factors are 34.3, 35.6, 34.8, and 34.7, with the number of plates at

4096, 4065, 4081, and 4088, respectively. Columns as long as 15 ft. have been prepared by this

method. This technique is very reproducible and some flexibility in the concentration of the

polymerizable monomer in the starting mixture is allowed.

Although many factors affect the outcome of polymerization such as monomers, initiator, solvents,

temperature and the forth. In our previous studies, it is believed that either heptane or heptane/MTBE

(methyl tert-butyl ether) gives best products. We tried hexadecane later on because of concerns about

the possible explosive nature of the solvents (bp around 80 oc) at higher temperature (90-95 °C) under

sealed conditions. But, the result was not particularly impressive. Temperature should be kept at 60-80

oc and the polymerization should be allowed to proceed for much longer time.
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We have found that the concentration range of DVB performed better between 8% and 12.5%. We

would continue working on this matter searching for the most optimum condition. The use of monomer

with longer linkage might improve in situ polymerization in some way. Another type of polymerization
initiators is also on the list for consideration.

b. DVB copolymer PLOT columns for water and ammonia

Exobiology has been and continues to be a subject of interest to NASA. The examination of extraterrestrial

bodies, e.g. planets, moons, comets and planetary dust, for the presence of the compounds and elements

necessary for the development of life is therefore an objective of much analytical effort. From our

knowledge of life on Earth, we know that the presence of water and ammonia are of critical importance to

the development of life. Gas chromatography is a technique which can be used for the analysis of water and

ammonia, however, good separation columns are difficult to find. Although several liquid coated columns

have been reported for this application, they can not be used in coordination with such highly sensitive

detectors as the ion mobility spectrometer(IMS) or metastable ionization detector (MID) because of bleeding

problems. For these reasons, NASA-Ames Research Center is involved in low or no bleed column

development for gas chromatographic use. Last year, two PLOT columns were developed for

water/ammonia separation, but the resolution is not good enough for flight program application.

The copolymer of Divinyl benzene/Ethylene glycol dimethacrylate (DVB/EGDM), was used in the

synthesis of Porapak® N, which has been used to separate water and ammonia. Using in-situ

polymerization procedures similar to those described in the last section, DVB/EGDM PLOT columns

were prepared. Different ratios of DVB/EGDM were investigated for optimizing the separation of

water and ammonia. It was found that a DVB/EGDM of 60/14 by weight in a PLOT column optimally

separated water and ammonia (See Figure 3a). Figure 3b illustrates the resulting chromatogram of

ammonia, water, and HCN this time on a 60/40 (by weight) DVB/styrene column.

The relative retention (TR H20/TR NH3) of water/ammonia varies as a function of ethylene glycol

dimethacrylate concentration. Therefore, the pore size of the copolymer may be the controlling factor

in this separation. To test this hypothesis, DVB/styrene and DBV/ethylenegylcoldimetharylate in-situ

polymerization PLOT columns were prepared. The relative retentions of water/ammonia (TR H20/TR

NH3) increased with an increase in the styrene and ethylenegylcoldimetharylate concentration (see

Figure 4). PLOT columns prepared from homopolymers of triethylene glycol dimethacrylate,

tetraethylene glycol dimethacrylate, 1,4-butadiol dimethacrylate, and 1,6-hexamethylenediol

dimethacrylate were tested. The results demonstrated that the pore size is a function of cross-linking,

the higher the cross-linking density, the smaller the pore size and thus, directly affecting the relative
retention of water/ammonia.
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Figure 5A cross section of bonded PLOT column 103-1

Figure 5B Pciymer particles on the surface layer of 5A





2. Silane Modified Bonded stainless steel PLOT columns

Fused silica tubing has been used for capillary columns for many years due to its inert character. Also,

it can be modified. However, due to the brittleness of these columns, they are difficult to connect, can

break very easily and are prone to bleeding. For these reasons these type of columns are not suitable

for use within a spacecraft type of environment. Inert coated stainless steel capillary columns were

studied. A bonded in-situ polymerization PLOT stainless steel column was developed from a coated

silicon polymer with a polymerized vinyl group. This type of PLOT column with the adsorbent

deposited and bonded on the wall of the column as a thin layer has very high permeability, thus, very

long columns can be used, with high separation power. A scanning electromicroscopic (SEM)

photograph indicated that the porous polymer particles are bonded on the wall as demonstrated in

Figure 5. Initial results show that adequate chromatographic separation could be obtained from this

column although not as good as the ones obtained using the other coated PLOT columns discussed

previously.

3. Bonded Fused Silica capillary columns

Three approaches were investigated for preparing these columns. 1). modifying fused silica surface

with polymerizable monomers, such as trialkoxysilyl methacrylates, 2). modifying fused silica surface

with free radical chain transfer agents, such as trialkoxysilyl thiol agents, 3). modifying fused silica

surface with initiators, such as azo-trialkoxysilanes.

The first two approaches have proved to be not reasonably reproducible to form bonded porous polymer

particles on the silica surface. Due to this observation, we designed and prepared a novel immobilized

azo initiator, which would allow us to prepare Bonded Porous Layer Open Tubular (PLOT) DVB-based

columns using our innovative in situ polymerization. There were several problems we encountered in

these studies such as: (1) purity of polymerization initiator azo-silanes; (2) the reproducibility of quality

of prepared GC columns; and other minors. We have looked into these individual areas, identified some

new potential pitfalls, and made efforts to solve these problems using varied approaches.

In order to attach a polymerization initiator to the surface of the fused silica capillary column, we need to

functionalize a commercially available azo polymerization initiator with a trialkoxysilyl group. Two azo

silanes were synthesized as follows:

O
" N "_ -CN H

0

+ N H2"'"-,.,/_ Si( 0 Et) 3

I DCC

CH2C12
0 °C

0
CN HII

/Eto/ si N N"N N Si(OEt)3

H NC" "" - u
0

Scheme 1
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Due to the problems of stability of the initiators the polymerization was not tested. If funding is

continued, other approaches will be investigated.

C. Micropaeked GC Columns

In general, silica-based columns are subject to hydrolysis when the sample contains water or acid and

base compounds. To improve our previously developed silica-based good column, we have designed

new silica-based polymers which form from our newly synthesized monomers. The polymerization is

not only based on a Si-O-Si bond, but also includes CH2=CH -. Two monomers were synthesized by

reacting n-octadecyltrimethoxysilane with allylmagnesium chloride or 4-bromostyrene magnesium.

Micropacked GC columns were prepared using stainless steel tubes with an I.D. 1 mm and lengths as

small as 2 feet. These micropacked columns contain chemically bonded stationary phases

incorporating Si-O-Si bonds and vinyl groups. They may play a key role in future space missions

because of the following characteristics: 1) low flow rates, e.g., allowing a direct GC-MS coupling; 2)

minimized bleeding of the stationary liquid phase, 3) increased loading capacity, 4) a small value of the

C term of the Van Deemter equations, and 5) they are easier to miniaturize.

Three types of octyl- and octadecyl phases were prepared by different approaches: (1) a monomeric

phase using excess monofunctional silane, (2) a monomeric phase using di- or trifunctional silane under

anhydrous condition, and (3) a polymeric phase using di- or trifunctional silane in the presence of small

amounts of water. The columns could be operated at an average flow rate of 10 ml/min without any

appreciable pressure drop. A ten-hydrocarbon mixture was separated in approximately 3 minutes (see

Figure 6) on the polymeric octadecyl phase compared to 15 min. using Isocyanate phases.

A 2 foot long, stainless steel column was also prepared with a stationary phase consisting of very small

polymeric particles (10 to 30 _tm). The stationary phase was prepared using a nonsurfactant

organosolvent system followed by polymerization of the divinylbenzene in a mixture of heptane and

butyl alcohol. This column efficiently operates at flow rates as low as 1.55 ml/min (Figure 7). Initial
results show that it can be used to resolve a mixture containing Freons (Figure 7b) more efficiently than

the hydrocarbon mixture (Figure 7a).
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In conclusion,threetypesof GC Columnsweredeveloped,1.bondedstainlesssteelDVBs PLOT
columns,2. micro-packedcolumns,and3. bondedsiliconPLOTfused-silicacolumns.

1.BondedstainlesssteelDVBs PLOTcolumns
• Threeazo-silaneswassynthesizedfor bondingto thestainlesssteeltube'ssurfaceusing in-situ

polymerization of DVBs monomers to form bonded PLOT columns. The results are shown in Fig. 1.

Although, the separation of 10 hydrocarbons is not very impressive. The method for making bonded

stainless steel Polymeric PLOT column is demonstrated. The major problem is the synthesis and

purification of the azo-silane.

2. Micro-packed Columns

In general, silica-based columns are subject to hydrolysis when the sample contains water or acid and

base compounds. To improve our previously developed silica-based good column, we have designed

new silica-based polymers which form from our newly synthesized monomers. The polymerization is

not only based on a Si-O-Si bond, but also includes CH2=CH -.

3. Bonded Silicon PLOT Fused-silica Columns

As demonstrated in the previous section, a highly efficient bonded PLOT column had been developed.

A patent disclosure has been filed with Ames Research Center.

II. Pyrosensor Development

One of the most important facts brought to light by the Viking Mission to Mars was the highly

reactive nature of the Martian soil observed during the Viking Biology experiments. Small amounts

of oxygen and larger amounts of carbon dioxide gas rapidly evolved from samples when they were

exposed to a humid environment (Gas Exchange Experiment, GEX). When nutrients were added to

the Martian soil, they were oxidized to carbon dioxide gas (GEX and Labeled Release (LR)

Experiments). 1 When soil samples were heated at high temperatures (145-165 ° C), the evolution of

carbon dioxide gas was observed (LR); oxygen still came off upon humidification of this sample

(GEX). These results, in particular, could be explained by searching for the presence of

nonbiological oxidants such as peroxides or superoxides in the soil. For this reason, we have

proposed to develop pyrosensors for determination of the possible oxidant in the Martian soil.

If a material has internal electrical symmetry, it is generally neutral and lacks a permanent

dipole. If it is asymmetric, e.g., water, it has a permanent electric dipole. Most asymmetric materials

in bulk have a zero dipole effect because of a random or self-cancelling arrangement. Some

asymmetric materials, however, maintain a net dipole orientation even in bulk. Heating such a

material (within limits) does not randomize the dipoles, but instead rotates them in unison and thus

produces a polarization. Because this occurs in the absence of an external electric field, it is called a

spontaneous polarization. A spontaneous polarization which is induced by heating is called the

pyroelectric effect. In a pyroelectric device, a change in temperature creates a change in polarization.

A pyroelectric device thus produces current only as it experiences a temperature change. When it is

at a constant temperature, no current is produced.

A thin film of a pyroelectric material which has electrodes deposited on both faces is a

pyroelectric sensor or pyrosensor. The electrodes gather charge. Because the material is a very good
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Figurel O. Micro-machined Gas Chromatography System





dielectric the charge is unable to leak through the thin film. In its simplest form, the pyroelectric

sensor is both a charge capacitor and a charge generator.

There are two approaches using the pyroelectric principle for determination of chemical

compounds in solution. In the first approach, the heat generated by an exothermal or endothermal

chemical reaction is sensed by a pyrosensor. This allows for the continuous quantitative detection of

some substances. An example of this is: the determination of peroxide concentration using catalysis

of enzyme-coated polyvinylidene difluoride (PVDF). PVDF film is commercially available and has

outstanding pyroelectric response; a change of one degree Celsius gives an output of about 3V for a

typical thickness of 25 lam.

The second approach involves the use of laser light. The sample absorbs energy from the

laser and the heat generated travels to the nearby sensor which is not in the path of the laser light.

This heat creates an electric signal that is measured and translated into an analytical concentration.

Examples are: coccine, B-carotene, MnO4-, Cd and Fe complexes all excited by a laser and analyzed

using pyrosensors. This technique also has been applied to measurements of phosphorus (as PO4-3)

and nitrogen (as NO3-) concentrations in natural waters. In the case of phosphorus, a detection limit

of about 2 ppb was obtained.

We have applied these approaches and constructed our own pyrosensors. The sensor

provides a very stable baseline, and demonstrates that hydrogen peroxide concentration can be

determined from 40 to 300 ppm with a reasonable calibration curve as shown in Figure 8. In recent

collaboration with Dr. H. Coufal, IBM Almaden Research Center, CA., the sensor (Figure 9) was

shown to be sensitive to 100 nJ of energy. Using this sensor, hydrogen peroxide concentrations can

be detected as low as 1 ppm in a 50 gL sample size with 300 mV signal amplitude. Further

application of this technology will be proposed and investigated.

III. Micro-machined GC Instrument Development

The development of gas chromatographic equipment for planetary atmospheric probes and soil, gas or

pyrolysis analysis was required for both the Viking mission to Mars and the Pioneer Venus mission. A
GC instrument was used for the Pioneer Venus mission. However, future missions such as the Mars

Exploration Missions and missions to probe outer planet atmospheres or outer planet moons, will require

further reduction in weight, volume, and power requirements for their equipment.

A silicon-micromachined gas chromatography system containing both detector and column integrated into

a small piece of silicon have been studied by several researchers. The problem is that no sensitive detector

has been designed and tested. Here, we had proposed to use our Meta-stable Ionization Detectors (MIDs)

detector principle, and replace the radioactive material with a Glow Discharge method which has not been

studied on the silicon micromachined GC system. A very narrow discharge distance can be produced and

controlled, a helium ionization detector can be produced, and a highly sensitive analysis can be obtained

(sub. ppm can detected) through a micromachined silicon wafer. In addition, a column on a chip using our

in-house, newly developed, highly efficient silicon polymer material (U.S. Patented) will be modified and

coated to separate most of the chemical components. This small and highly sensitive GC system will be

able to meet future missions' requirements. The complete system is shown in Figure 10. Our first step is

to design and fabricate the micro machine glow discharge detector to replace the current MID.

9
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MIDs in general belong to a class of" cold" ionization devices which also includes the Electron

Capture Detector (ECD) and Cross Section Detector (CSD). They are all ion chambers with a

radioactive source in an electric field. Recently, a glow discharge detector (not micromachined)

has been developed with highly sensitive results (ppb). An MID can be made by using a silicon

micromachining technique and replacing the radioactive sources with the glow discharge

method. This glow discharge MID (GDMID) can be extremely small. The volume of the

detector cell is less than 10 pico liter ( or < 10 .2 ul ). This will increase the sensitivity of the

detector. Furthermore, silicon micromachining allows the GDMID to be batch fabricated with

good reproducibility. Recently, four batches of micro-machining detector have been engineered

and fabricated. The evaluation of the detector is in process. A glow discharge detector has been

successfully miniaturized onto a silicon chip. The gas path in this micro-machined detector was

established by using 280 mm OD silica tubing. The difficulty of connecting the tubing to a chip

has been overcome by choosing the proper epoxy adhesive.

1. Interface Connection Method

The micro-machining silicon detector is so small that the inlet/outlet holes are difficult to

connect with GC tubing. Currently, we are using epoxide adhesive to connect fused silica

capillary tubing and the micro-machining detector's inlet and outlet. Preliminary results indicate

that this connection is sufficient without displaying any leakage.

2. Testing of Discharge

A glow discharge detector has been successfully miniaturized onto a silicon chip. The gas path in this

micro-machined detector was established by using 280 mm OD silica tubing. The difficulty of

connecting the tubing to a chip has been overcome by choosing the proper epoxy adhesive. The detector

was finally fabricated in a 16x 16x2 mm case (see Fig. 11). The discharge current is being tested. Due to

the high applied voltage, the silicon chip was breaking down and the charge leaked. The new glass chip

design had been completed and fabrication is in progress.

3. Micro-porous silicon surface for discharge

A possible attempt to get light emission out of silicon is to use nanocrystalline structures. By

forming a porous silicon film with differently doped wafers and with different anodizing

procedures, Richter et al. ( IEEE Electron Device Letter, 12, 691, 1991) and Kozlowski et.al.

(Sensors and Actuators A 53,284, 1996) had demonstrated the plasma emission. Our second

discharge detector is designed using this principle. Unfortunately, due to technical difficulties,

the devices failed to work. New designs with silicon and glass chip have been finished and

fabrication is in process.

In conclusion, several micro-machined emission detectors had been fabricated and tested. The

results indicate that some problems in fabricating inert and strong bonded electrodes on the

silicon surface exist. APt electrode will replace the gold electrode, and a 100 micron of silicon

oxide will replace the 50 micron currently used in the metal-silicon interface to reduced leakage

of electron through the silicon layer.

10





IV. Development of a Method for the Fast Separating and Detecting of Amino Acids

The development of chromatographic instruments for the analysis of gas, soil, and rock samples

is important in supporting scientific investigations on future planetary missions. In the wake of
the successful mission of Pathfinder on Mars, interest in finding biological molecules or their

prebiotic precursors is again prevailing. In the fundamental classes ofbiomolecules, L-amino

acids are especially outstanding in their distinct chirality as a biosignature for Earth life.

Detection of L-amino acids will, therefore, provide a direct evidence for possible extinct and

extant life in planetary systems, and may lead to the discovery of potential biodeposit sites for

further planetary exploration.

A miniaturized, fully automatic analysis instrument, incorporated with affinity microcolumns

which are highly specific for L-amino acids was studied. Affinity microcolumns were prepared

using techniques, developed in our laboratory, such as in situ polymerization, sol gel process,

and molecular imprinting.

During the second half of the 1997-1998 year, we also focused on prepared amino acid-imprinted

polymers using several approaches which have practiced in the literature. Several factors were

considered to be important in designing and synthesizing molecularly imprinting polymers: 1.
the choice of functionalized monomers and cross-linker; 2. the solvent used; 3. the procedure

adopted. We have used a variety of monomers and performed polymer synthesis under several

different conditions. The results from the experiments performed were less than encouraging,

but there is still a lot of room for improvement and modifications. Some affinity experiments of

molecularly imprinting polymers are in progress.
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A New Method for the Preparation of Polymeric Porous Layer

Open Tubular Columns for GC Application*

Thomas C. Shen* and Mei-Ling Wang

SETI Institute, NASA Ames Research Center, Moffett Field, California 94035-1000, USA

Abstract. A new method to prepare polymeric PLOT columns by using in situ

polymerization technology is described. The method involves a straightforward in

situ polymerization of the monomer. The polymer produced is directly coated on
the metal tubing. This eliminates many of the steps needed in conventional

polymeric PLOT column preparation. Our method is easy to operate and produces
very reproducible columns, as shown previously (T. C. Shen, J. Chromatogr. Sci. 30,
239, 1992). The effects of solvents, tubing pretreatments, initiators and reaction

temperatures in the preparation of PLOT columns are studied. Several columns

have been developed to separate (1) highly polar compounds, such as water and
ammonia or water and HCN, and (2) hydrocarbons and inert gases. A recent

improvement has allowed us to produce bonded polymeric PLOT columns. These
were studied, and the results are included also. © 1995John Wiley & Sons, Inc.

Key words: porous layer open tubular column, polymeric porous layer capillary

column, in situ polymerization

INTRODUCTION

Capillary columns are extensively used in

gas chromatographic analytical techniques for

the separation and quantitation of gaseous to
semi-volatile samples. In general, capillary

columns comprise a liquid phase or a porous

solid phase. Coating a liquid phase onto the

inside of a capillary is relatively easy and rou-

tine, but the coating/bonding of a solid porous

layer inside the capillary tube can be difficult in
terms of reproducibility. Porous layer open

tubular (PLOT) columns are currently pro-

duced either by static coating, dynamic coating,

or by a combination of static and dynamic coat-
ing procedures. These procedures are compli-

cated and require special expertise and facili-

ties, since the suspension must be stable

throughout the entire coating process, which

can take up to days in the case of the static

method. Dynamic processes are somewhat

quicker and easier, but reproducibility is a ma-
jor problem [2-8]. In the case of polymeric

PLOT columns, the current existing method

requires that polymerization of monomers takes

place in the first step. The polymer particles
that are produced are then sieved and washed

to recover the size required for preparing a

stable suspension solution. In order to over-

come these difficulties, we have developed a

novel method to prepare polymeric PLOT

columns by in situ polymerization [1, 9, 10].
This method combines the polymerization and

the coating procedure into one step. Although

the method is still under development, some

factors affecting column performance have been

studied and are presented in this article.

EXPERIMENTAL

Materials. The materials were obtained as

previously described [1, 9]. In addition, Sol-Gel

A (Membrane & Polymer Technology Inc., San

Jose, CA), vinyltrimethoxy silane (VTS) (Al-
drich Chemical Co.), 3-methacryloxypropyitri-

methoxy silane (MAPTMS) (Union Carbide

Co.) were used as received without purification.

Column preparation. Nonbonded PLOT

columns: columns were prepared by the in situ

polymerization method previously described [1,

*Presented at the 17th International Symposium on Capillary Chromatography and Electrophoresis, Winter-
green, Virginia, USA, May 1995.
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Table I. Solvent effect.

Solvent Performance DVB
concentration

Isopropanol Suspension powder blown (wt %)
out

Heptane Column plug 20
Methanol Good column 15
Methanol/water Fiber materials blown out 12

Methanol/heptane Column plug
Ethyl acetate Column plug 8.1
Butanol Column semi-plug

Table II. Effect of monomer concentration.

Result

Column plug
Column plug
Good column (operating

pressure: 50 psi)
Good column (operating

pressure: 30 psi)

9]. The general procedure for the preparation
of bonded PLOT columns involved the follow-

ing steps: the stainless steel tubing was washed
with water, methanol, and acetone and dried

with a nitrogen sweep. After oxidation of the

tubing at 400°C for 10 min, it was coated with a

mixture containing Sol-Gel A (2.08 g), THF

(3.00 g), and water (0.20 g). The tubing was then

cured with 1% NH3/H20 for 30 min and,
under He sweep, was heated in a variable tem-

perature heating oven to 150°C at a heating

rate of 2°C/min. The tubing was kept at 150°C
for 30 min. It was then treated with a solution

mixture of MAPTMS (2.27 g), VTS (2.06 g),

THF (6.00 g), and water (0.80 g). A water vapor

flow was introduced into the tubing for 2 h.

Both ends of the tubing were capped. Next, the
tubing was heated to 60°C on a rotated cylinder
for 4 h. After the coil was cooled to room

temperature by He flow, a mixture including

divinylbenzene (DVB) (0.07 g), t-butanol (0.50

g), heptane (1.50 g), benzoyl peroxide (0.02 g),
and methylethylketone (0.20 g) was added to

the tubing via a glass funnel. With both ends

being capped with stainless-steel endcaps, the

tubing was slipped over a hollow metal cylinder
which was then fixed to a mechanical rotation

rod in an oven. The oven temperature was set

at 95°C and the coil was rotated at 15 rpm for
16-18 h. The tubing was cooled to room tem-

perature and both ends were opened. The sol-

vent was purged with nitrogen at a low pressure
of 10-20 psi. After the solvent was completely
eliminated, the column was conditioned at
150°C for over 12 h.

Gas chromatographic evaluation. The col-

umn prepared from the in situ polymerization
method was installed in a GC that was equipped

with a thermal conductivity detector. Helium

carrier gas was used to separate the various

compounds. Gas samples were injected onto

the column using a gas sample valve. Flow rates

and operational temperatures are given in the
figures.

Scanning electron microscope evaluation.

The scanning electron microscope (SEM) pic-
tures (Figure 3) were taken by a Hitachi S-4000

Field Emission Scanning Electron Microscope.

The samples were prepared by the following

method: a portion of the column (1 in. in length)

was cut using a file. The samples were then
mounted on a plate. In order to prevent the

samples from charging, they were sputtered for

3 min with gold using a Polaron E5100 SEM

X = H2C----C(CH3)CO---, HS---, or others

Figure 1. Scheme of in-situ polymerization stainless steel bonded PLOT column formation.
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Coating Unit. Finally, the samples were viewed

and pictures were taken at 2.0 kV and magnifi-
cations of 7.00 and 50.0 K, respectively.

RESULTS AND DISCUSSION
A. Nonbonded PLOT column. The condi-

tions for the polymerization reaction involving

divinylbenzene (DVB) are studied in detail in

the following.

1. Tubing pretreatment: The inner surface of
the stainless steel tube was treated with acid,

such as concentrated hydrochloric acid, or

with a base, such as 10% NaOH solution.

This was followed by washing with distilled

water, methanol, acetone, and methylene
chloride. Neither the acid nor the base treat-

ments produced good columns; all polymers
flowed out without coating. Only when the

inner surface was cleaned with a sequence of

methanol, acetone, and methylene chloride

were good columns with good separation

characteristics produced.
2. Solvent selection: The selection of a suitable

solvent system is the key to producing good

.

.

columns. Table I shows several solvents that

were tested for the polydivinylbenzene PLOT

columns. Only methanol gave good column

performance. The reason is not clear at this
moment.

Effect of DVB concentration: The polymer-
ization concentration also affects the PLOT

column formation. Particle size increased

with increasing DVB concentration. Big par-

ticles will plug the column. As shown in
Table II, different concentrations were
tested. It was observed that both the 12 and

8.1% DVB columns gave good results.

Temperature effect: Three different temper-
atures were studied. The results (Table III)

indicate that higher temperatures produced

plugged columns. This may be because at
lower temperatures the smaller and less

crosslinked particles form at the beginning
of the reaction. Small particles will adhere

better to the metal tubing and ultimately

form better columns. At higher temperature,

the particles grow too fast to adhere on the
wall [1, 9].

Initiation:

_'_o'O O_

O
II

SH + _"'_O"

K.J

- 2
A

O

O.J-o
O

+ _OH

Propagation:

w S . +

| |
-'--S--C-C-

| |

z_' w41l,.

_ =C.s.

-c

II
.---'S_C-C.

II

,I I, I I
S-I-C-C-.l---c-c-

"l t'"t !

Teamination:

,I I, I I2 S-(-C-C-I-C-C"
_l I'"l I

,i I__ f ,I I, I I
_-- '---'S-I-C-C-+-CffiC + "----S-{-C-C--}--C-C'-

_l I I* I \ _l I'* I I

---. ,I l, I I ,I l, --2 s-I-c-c--I-c-c .... s-.l-c-c-t_s
_' I I 'a I | _| | 12a+2

Figure 2. Scheme of anticipated reaction mechanism when using 3-mercaptopropyltrimethoxy silane as

coating reagent.
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Table III. Temperature effect.

Temperature (°C) Performance

75 Good column

85 Column slight plug
95 Column plug

B. Bonded PLOT columns. We have devel-

oped high-efficiency PLOT coated columns that

would be useful in the gas chromatographic
investigations of planetary atmospheres in fu-

ture space missions. However, when shock or

vibration (similar to what occurs during space-

craft launch and travel) is applied, the columns

bleed out because the polymeric particles are
not bonded onto the stainless steel wall. This

problem is also found in commercial PLOT

columns. In addition, metal capillary columns
have been considered attractive because their

coil radii can be made smaller than those of

fused silica capillary columns and have high
mechanical durability. For these reasons, we

investigated bonded stainless steel PLOT

columns. Although the procedures for creating
metal capillary columns are still under develop-

ment [11-13], we have developed a polymer

precoating that meets the requirement of form-

ing strong bonding to the metal tubing. The
bonding mechanism is similar to most Latex

coating procedures [14]. This precoating can

also be modified with the prepolymer contain-

ing a polymerizable functional group X as shown

in Figure 1. Currently, two prepolymers con-

J. Microcolurnn Separations, Vol. 7, No. 5, 1995

taining different polymerizable functional

groups are selected for bonding polymeric par-

ticles during the in situ polymerization step (see
Figure 1).

The ideal case is one in which the polymer-

izable functional groups are initiated by the
initiator first and then form polymer particles

thereafter (Figure 2). In many cases, however,

the initiators are not just initiating polymeriz-

able functional groups but monomers as well.

For this reason, some nonbonded polymer par-
ticles are formed. This problem can cause the

column to plug or to have an insufficient num-

ber of bonded particles on the column wall. By
careful control of the reaction conditions, we

were able to prepare bonded PLOT columns

from in situ polymerization. Figures 3 and 4
give these results.

Figure 3A demonstrates the polymeric
bonding layer on the wall of a stainless steel

tube. Figure 3B shows the structure of poly-
meric particles of the bonded layer. The col-

umn withstood our shock and vibration test, as

no free particles flowed out. In addition, col-
umn performance remained the same as before

the test. Figures 4A and 4B demonstrate the

separation of fluorohydrocarbons and hydrocar-

bons using a bonded PLOT column made by
the in situ polymerization method.

Although the in situ polymerization method

to prepare nonbonded or bonded polymeric

PLOT columns has been developed for the

separation of water and ammonia, light gases,

hydrocarbons, and fluorohydrocarbons, the

(A) (B)

::::::::::::

:: i_i:: :::i: :!i

::: : i: .i:i:!iii!:i:i_::ii_iii_ii:_ii_i!:i

Figure 3. SEM Photograph of a bonded PLOT column 64) polymeric bonding layer on the wall of a
stainless steel tube, (B) structure of polymeric particles of the bonded layer.
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(B)

CA)

112

Figure 4. Gas chromatograms of a PLOT col-

umn (12ft., .042 in. o.d., .02 in. i.d.) operating at

85°C and 1.87 mL / min, with helium as the

carrier gas (A) separation of 4 freons: (1) air and

CF,, (2) C2F 6, (3) CCI2F 2, (4) CHCIF 2. (B)

separation of 5 hydrocarbons: (1) air and methane,

(2) acetylene, (3)propane, (4)propyne, (5)isobu-

tane.

method is still in its infant stage. Our next step

will be the synthesis of a prepolymer containing

peroxide or azo-nitrile groups which will initiate

polymerization and form bonded polymer parti-

cles thereafter.
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I Abstract I

Studies of dlvlnylbenzene copolymers end dlmathscrylete

homopolymersIndicate that the polymerpore size controls the
separation of water end ammonia on porous-layer-open-
tubular (PLOT) columns.To s lesser degree, the polarity of the
polymers also effects the separation of a water-ammonia gas
mixture. Our results demonstrate that the poresize can be
regulatedby controllingthe cross-Unklngdensity or the chain
length between the cross-linking functional groups. An
optimum pore size will provide the best separation of water
and ammonia.

Introduction

Exobiology has been and continues to be a subject of interest
to NASA. From our knowledge of life on Earth, we know that
the presence of water and ammonia was of critical importance for
chemical evolution and the origin of life. The examination of ex-
traterrestrial bodies (in other words, planets, moons, comets,
and planetary dust) for the presence of water, ammonia, and

other biogenic compounds and elements is an object of much
analytical effort. Gas chromatography (GC) can be used for the
analysis of water and amines (1-3); however, columns that pro-

duce good separation are difficult to find. Although several
liquid-coated columns have been reported (4,5) for this applica-
tion, they cannot be used in conjunction with highly sensitive de-
tectors such as the ion mobility spectrometer (IMS) or metastable
ionization detector (MID) because of bleeding problems associ-
ated with these columns (6,7). For these reasons, NASA-Ames
Research Center is involved in low or no-bleed column devel-

opment for GC use.
Current commercial columns separate water-ammonia solu-

tions through temperature programming. In flight missions, an
isothermal condition is preferred. Under isothermal conditions,
most of the commercial columns either cannot give good sepa-
ration or have severe tailing problems. Recently, several porous-
layer-open-tubular (PLOT) columns were developed and inves-
tigated in our laboratory for the separation of water-ammonia

• Author to whom cortespot_lence should be acidmssed.

solutions (8). We describe the polymer pore size and solubility
effects on water-ammonia separation.

Experimental

Materials. Divinylbenzene (DVB) (95% purity) (Dow _cal;
Midland, MO) and ethyleneglycoldimethacrylate (EGDM) (Arco
Chemical Co.; Newton Square, PA), diethyleneglycoldimethacry-
late (DEGDM), triethyleneglycoldimethacrylate (TEGDM), tetra-
ethyleneglyeoldimethacrylate (TI'EGDM), polyethyleneglycol
(400)dimethacrylate (PEGDM), 1,4-butanediol dimethacrylate
(BTDM), 1,6-hexamethylene dimethacrylate (I-IMDM), penta-
erythdtol tetramethacrylate (PTMA), and pentaerythritol triaerylate
(PTAA) (all from Polysciences, Inc.; Warrington, PA) were passed
through a column of Supersorb 22 (Membrane & Polymer Tech-
nology; San Jose, CA) to remove the polyam'izafion inhibitor be-
fore use. Styrene (Aldrich; Milwaukee, WI) was treated with 1M
NaOH solution. The styrene layer was separated and dried with
CaO before use. Methanol (J.T. Baker, Phillipsburg, NJ), iso-
propanol,heptane (Matheson Coleman & Bell; Cincinnati, OH),
2,2'-azobisisobutyronitrile (Polysciences), and rnethylethylketone
(J.T.Baker) were used as received without purification.

Column preparation. Columns were prepared by the in situ
polymerization method previously described (8). In each case,
a solvent was selected from one of the following to produce the
column: methanol, isopropanol, heptane, or mixtures of each.

Gas chromatographic evaluation. The column prepared from
the in situ polymerization method was installed in a GC that was
equipped with a thermal conductivity detector.Helium cartier gas
was used to separate the various compounds. Gas samples were
injected onto the column using a gas sample valve. The flow rate
and operational temperature are given in the figures.

Scanning electron microscope evaluation. The scanning elec-
Iron microscope (SEM) pictures (Figure 1) were taken by a Hi-
tachi S-4000 Field Emission Scanning Electron Microscope.
The samples were prepared by the following method: A portion
of the column (1 in. length) was cut using a file; the samples were
mounted on a plate; to prevent the samples from charging, the
samples were sputtered for 3 rain with gold using a Polaron
E5100 SEM Coating Unit; finally, the samples were viewed and
pictures were taken at 2.0 kV and magnifications of 7.00 K and
50.0 K, respectively.

36 Reproduction (photocopying) ol editorial content Of this _Jrnal is prohibited w#hout publisher's pervasive.
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Results and Discussion

Column preparation

The PLOT columns prepared by in situ polymerization can be

classified into three types:

• Columns with very low operational pressure (less than 10 psi

at 3--4 mL/min flow rate) that are formed when the particles

are small but stable and the coating is uniform

• Columns with medium operational pressure (P) (50>P>10

psi) that are produced by formation of very small and un-

stable particles that coagulate and form large clusters thereby

reducing the column passway

• Columns with high operational pressure (more than 50 psi)

that are formed when small particles aggregate and com-

pletely block the column in many thin segments.

Figure 1A shows an HMDM PLOT column made using a

butanol-hexane solvent system. The formation of properly sized

latexes produces a very uniform coating. The operational pres-

sure at a flow rate of 4--6 mlJmin is only 10 psi. The column sep-

aration efficiency is also very high. Figure 1B shows an HMDM

PLOT column produced using a heptane solvent system. Very

small particles form at the beginning; later, aggregation occurs,

and clusters form. Although it has high Porosity, the column is

plugge d even at pressures over 100 psi. It is clear that selection

of a suitable solvent system for Polymerization is very important

for producing PLOT columns with low operational pressures.

where VH2o and VNH3 are the specific retention volumes of water

and ammonia, and tHz_ tNH3, and tair are retention times of water,

ammonia, and air, respectively. The water-ammonia relative re-

tention increases with an increase in the concentration of EGDM

as shown in Figure 2.

Two factors, pore size and solubility, are important in GC

separation, adsorption, and desorption processes ( ! 1). Adsorption

is related to the solubility factor, which is mainly determined by

the ability of the gases to condense as well as the physical in-

teraction of a gas molecule with the polymer matrix. Desorption

is primarily determined by the size of a gas molecule as well as

factors such as Polymer segmental mobility and intersegmental

packing density (or pore size).

To determine which factor influences the separation of water

and ammonia in DVB-EGDM PLOT columns, we examined the

solubility parameter first.

In recent years, gas-liquid chromatography (GLC) has been

used to determine thermodynamic parameters for polymer sub-

strates (12-14). Based on inverse chromatography, the solubility

parameter can be estimated (15). It is clear that the retention

volume of a substrate is related to the polymer-solvent (or Flory-

Huggins) interaction parameter (16), x, as shown in the fol-

lowing equation:

xl2 = In (273.15 R v2_p / Vg v, P0 -
( 1-v ,/M2V2sp) - (P,/RT)(B_,-v, ) Eq2

Water and ammonia separation

Porapak N, which is made from DVB-EGDM, has already

been shown to separate water and ammonia (9,10). Therefore,

different ratios of DVB-EGDM were used to produce in situ

polymerized PLOT columns for this separation. The water-am-

monia solution relative retention (rH2olrNH3) can be calculated as
follows:

VH,O/VNI-I 3 = (rH:O/rSH 3) = ( tH20 -- tair) / ( tsn_ -- tair) Eq 1

A B

Figure 1. Scanning electron microscope photographs of 1,6-hexamethylenedimethacrylate
(HMDM) polymerparticles coated on the wall of the porous-layer-open-tubular (PLOT)
columnspreparedfrom insitupolymerization:A, butanol-hexanesolventsystemandB, hep-
tanesolventsystem.

where M2 is the number average molecular weight of the

polymer, v_,_ is the specific volume of the polymer at the column

temperature (T), Vg is retention volume from GC analysis, v_ is

the molar volume of the solvent, P_ is the vapor pressure of the

solvent at the column temperature, BH is the gas-state second

virial coefficient of the solvents, and R is the gas constant. Al-

though this equation is only applied at the polymer melt state, the
retention volumes should also relate to the interaction between

gases and the cross-linking polymer. Based on the

interaction parameter (xt2), the solubility parameter

of the polymer and the solvent can be expressed by

the following equation:

x=: = (v,/r) (71-72) Eq 3

where 7, and 72 are the solubility parameters of the

polymer and solvent, respectively.

Because the solubility parameters of DVB and

EGDM are very close (9.28 and 9.5 [cal/cm3]_/2) as

estimated by Fedors' method (17), the solubility pa-

rameters of their copolymers should be very close.

Therefore, their water-ammonia separation factors

should be similar. This is not observed (Figure 2).

In this case, the pore size may be the controlling

factor. To test this hypothesis, DVB-styrene in situ

polymerized PLOT columns were prepared. The

solubility parameter for styrene is 9.3 (cal/cm3)'/:,

which is very close to the DVB value. The relative

retention of the water-ammonia solution also in-

creases with increasing styrene concentration up to

43% (Figure 2).

To further confirm the pore size effect, PLOT

columns prepared from homopolymers of DEGDM,

TEGDM, "I_EGDM, and PEGDM were tested. The

results listed in Table I indicate that an increase in

the chain length between the dimethacrylate func-
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Figure 2. Effectof the mole percentof styreneand EGDM comonomersin divinylbenzene
copolymerPLOTcolumnsfor water-ammoniasolutionseparation.

Table I. Water-Ammonia Relative Retentions (rH=o--rNH=)

Column Polymers* r.x0--r..= Operational Solventsystem
pressuret

50-1 EGDM 6.2 a heptane-t-butanoI-MEK

78-5 DEGDM 10.0 a MEK-t-butanol

71-2 TEGDM 12.8 a MEK-heptane

78-1 "I-rEGDM 18.1 b MEK-t-butanol

56-3b PEGDM 12.0 b heptane-t-butanoI-MEK

68-2 BTDM 8.0 a MEK-methanol

68-3 HMDM 9.5 a MEK-methanol

62-2 PTAA 1.1 b heptane-t-butanol/MEK

78-2 PTMA 1.2 b MEK-t-butanol

PorapakNt 4.7

* SeeAppendixfor abbreviations.
t Carriergaspressureappliedto obtainflow rateof 4 mL/min, a < 10 psi,50 psi< b< 10 psi,

andc > 50 psi.
:[:AIItechChromatography,Deerfield,IL.
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Figure 3. Effectof chain length between two methacryloylgroups in
water-ammoniasolutionseparation.

tional groups of the dimethacrylate homopolymer

increases the separation between water and ammonia

(Figure 3).
It is clear that cross-linking density may control

the pore size; the higher the cross-linking density, the

smaller the pore size produced. The multifunctional

monomers, such as PTAA (which has a trifunctional

double bond) or PTMA (which has a tetrafunctional

double bond), form higher cross-linked and smaller

pore-sized polymers; therefore, water and ammonia

are not separated as completely (Table I).

When the styrene concentration is more than 43%,
the relative retention of a water-ammonia solution

decreases with increasing styrene concentration

(Figure 2). A possible explanation for such behavior

is that because styrene has nonfunctional double

bonds, any increase above a 43% styrene concentra-

tion will cause the polymer cross-linking density to

decrease, resulting in the pore size becoming over

sized and unstable (Figure 4B). This in turn will lead

to the pore walls collapsing or entangling to form a

smaller pore size. On the other hand, increasing the

DEGDM concentration (which has difunctional

double bonds) does not reduce cross-linking den-

sity; therefore, there is no pore over sizing and no

pore collapse. The same phenomena is also observed

in PEGDM; when the polyethylene-glycol unit is

too large, the pores become over sized (Figure 4C)

and collapse. The result of this collapse is that the rel-

ative retention of a water-ammonia solution also de-

creases (Figure 3 and Table I).

One could argue that the improved separation

using the ethyleneglycol derivatives may be caused

by increased water absorbency as the number of

ethyleneglycol units is increased. To test this effect,

DEGDM and TEGDM were replaced with BTDM

and HMDM. The results indicate that the ethylene-

glycol unit gives better separations than the CH 2-

CH2 unit, as shown in Figure 3. This may be caused

by the effect of the water soluble ethyleneglycol
units.

The chromatograms shown in Figures 5 and 6

demonstrate that water-ammonia is clearly sepa-

rated within 4 minutes using one of these columns
under isothermal conditions and low flow rate. The

PLOT column made from DVB and styrene

copolymer is capable of separating water-ammonia solutions

and water-HCN solutions (Figure 6). Since water, ammonia,

and HCN are present in comets that will be studied in future

NASA missions, the DVB-styrene copolymer PLOT column

was selected for further study.

Conclusion

Several DVB copolymer and dimethacrylate homopolymer

PLOT columns were developed and investigated for the separa-
tion of water and ammonia.

Microscopic examination of two PLOT columns made from

HMDM in different solvent systems revealed that a suitable sol-

vent system is important for proper polymerization. The sol-
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vent system must allow the polymers to form into appropriately
sized particles that uniformly coat the column wall.

Using an in situ polymerization method, several DVB
copolymer and dimethacrylate homopolymer PLOT columns
were developed and investigated for the separation of water and
ammonia. Based on the following results, we concluded that
the pore size of the polymers plays an important role in the sep-
aration of water-ammonia solutions:

• An increase of styrene or EGDM contained in the DVB
copolymer increases the relative retention time of water and
ammonia

• An increase in the chain length between dimethacrylate
functional groups of the dimethacrylate homopolymers also
increases the separation between water and ammonia

In addition, because ethyleneglycol chains between dimeth-
acrylate functional groups in the dimethacrylate homopolymer
(e.g., TEGDM homopolymer) give better separation than ethy-
lene chains between dimethacrylate functional groups in the
dimethacrylate homopolymers (e.g., HMDM homopolymer),
the polarity of the polymers also affects water and ammonia
separation.

A
DVB

B

_'__)B_''_ DVB +

Styrene

)

7;-

I rO_" Dimethacrylate

_C_: Derivative

/"
_o

(A)- n -- 1,2,3...
m= 0,1,2...

111

Figure4. Possiblemicrostructuresofthecross-linkedpolymers.
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Appendix

Key to abbreviations
BTDM
DEGDM
DVB
EGDM
HMDM
PEGDM
PLOT
PTAA
PTMA
TEGDM
TTEGDM

1,4-butanediol dimethacrylate
diethyleneglycoldimethacrylate
divinylbenzene
ethyleneglycoidimethacrylate
1,6-hexamethylene dimethacrylate
polyethyleneglycol (400)dimethacrylate
porous layer open tubular
pentaerythritol triacrylate
pentaerythritoi tetramethacrylate
triethyleneglycoldimethacrylate
tetraethyleneglycoldimethacrylate
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Figure5. Gaschromatographicseparationof waterandammoniausing
ethyleneglycoldimsthacrylate(EGDM)ordlethyienegtycoldimethacrylate
(DEGDM)PLOTcolumns(12ft.x O.03-in.i.d.,stainlesssteel)operating
at 100°Cand4 mL/min,withheliumasthecarriergas.Peaks:A,air;B,
NH3;andC,H20.
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Figure 6. Gas chromatographic separation of water-ammonia and
water-HCN solutionsusinga divinylbenezene-styrenecopolymerPLOT
column (12 ftx 0.03-in. i.d., stainless steel) operatingat 1000C and
4 mLJmin,with heliumas thecarriergas. Peaks:A, air;B, NH3;C, H20;and
D, HCN.
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ABSTRACT

Advanced microdevices for the exploration of the solar system have become increasingly important in the current environment of

fiscal constraints and payload size limitations. The Discovery-class missions being proposed for future exploration, while being
clearly responsive to this environment, will require highly miniaturized and efficient instruments based on these advanced

devices. Several instrument concept developments are continuing at Ames Research Center in support of specific exobiology
science goals _n future solar system studies on candidate Discovery and other missions. Developments include highly

miniaturized metastable ionization detectors for gas chromatography that weigh as little as 1-2 grams with sensitivities of 10" 14

tool/second and an advanced ion mobility spectrometer that has near-universal sensitivity and weighs as little as 200 grams.

New chemical sensors based on solid-state pyroelectric devices are being studied and developed that weigh a few milligrams and,

for example, have a sensitivity of 0.1 ppm for H202. Advanced X-ray diffraction and fluorescence instruments for

crystallographic and geochemical measurements on unprepared soil and rock samples are under test. A stable isotope laser diode
spectrometer for determination of 12C/13C and 180/160 isotope ratios on Mars at fractional percent accuracies has been

breadboarded. Finally, advanced computational methods are being applied to new instrument concepts allowing new, less

complex, and thus, smaller instruments.

Key Words: gas chromatography, exobiology, ion mobility spectrometry, microdevices, isotopic analysis, x-ray analysis,

pyrosensors, multiplex chromatography

1. INTRODUCTION

Several advanced, miniaturized, analytical devices are currently being developed at NASA Ames Research Center (Solar System

Exploration Branch) for the purpose of conducting exobiological research in the solar system. The acquisition of exobiological

data from interplanetary dust, comets, asteroids, planetary surfaces, planetary rings, and planetary atmospheres will address

scientific questions about the origin and distribution of biogenic elements and compounds. It will also address questions about

the potential for life to have evolved in the solar system beyond our own planetary confines, and the cosmic and planetary

settings in which life, its chemical precursors, or fossil remains could survive.

Given the number of scientific questions raised by exobiology, the diversity of information that can be collected, the diversity of

the environments from which the data may be gathered, and the range of operational constraints imposed by planetary missions,

it is appropriate to engage in the development of a diverse and flexible suite of instruments, instrument sensors, and analytical

techniques. The range of sensor instrumentation allows us to investigate volatile gaseous species, the isotopic ratios of elements

within some of these gases, and the elemental and mineralogical composition of solid phases in the dusts and rocks of planetary
environments.

To accommodate the rigors of the flight environment, advanced instrument and instrument sensor concepts require that attention

be given to miniaturization, ruggedization, efficiency of power consumption, efficient thermal management, and so forth. In

addition to addressing these flight-related engineering aspects, the development of breadboard concepts at Ames continues to

emphasize the improvement of instrument detection limits, detection ranges, and the precision, accuracy, and reliability of

measurements. Commensurate research includes the development of data analysis techniques and scientific and experimental

protocols to optimize data acquisition during flight operations, as well as to improve the fidelity of the data.



2.GAS CHROMATOGRAPHIC DETECTORS

To facilitate exobiology research in the extraterrestrial environment, improved methods and highly sensitive instrumentation

must be developed for in situ chemical analyses of the volatile chemical species that occur in the atmospheres and surfaces of
various bodies within the solar system. The development of fibw or improvement of existing sensitive, miniaturized detectors,

with both selective and universal response, for gas chromatography (GC) is a fundamental part of improving and designing this

type of future flight instrumentation.

The focus of our research into GC detectors has been the Metastable Ionization Detector (MID). When used with highly purified

helium, the MID provides universal sample detection with part per billion (ppb) sensitivity. Commercial MIDs, commonly
referred to as Helium Ionization Detectors, can have internal volumes over 300 _l and can respond to sample concentrations over

only two to three orders of magnitude. In contrast, the Voltage Modulator for MIDs developed at Ames I adjusts the applied

voltage to the MID and allows it to operate over a concentration range of over 106. The flight prototype MID developed from

this research and currently used in our laboratory is shown in Fig. 1. This Miniature Triaxial design Metastable Ionization

Detector (mini-MID), 2 has an internal volume of 180 p.l and is the GC detector in an advanced and streamlined version of the

Cometary Ice and Dust Experiment, (mini-CIDEX), of the Cometary Coma Chemical Composition (C4) Mission, a proposed

Discovery-class Mission. Our research into smaller detectors has produced Microvolume MIDs (I.tMIDs) having internal
volumes of 12 ktl with still smaller ones being investigated. Although not

currently part of a proposed flight instrument, the p.MID has the same

CARRIER sensitivity as the mini-MID while using flow rates below 2 ml/min, and is
_) compatible with the Voltage Modulator.
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Fig. 1. Triaxial Mini Metastable
Ionization Detector.

These detectors, although tiny, highly sensitive, with wide response range

and universal response, do not provide any sample identification

information other than the GC retention time. The complex mixtures that

may be encountered by exobiology flight experiments can place a heavy

burden on the chromatographic column(s) to provide resolution of all

species present. A GC detector providing sample identification

independent of GC retention time identification can reduce the number of

columns required for a given analysis as well as increase the analytical

capability of the instrument.

To fulfill this sample identification role, the Ion Mobility Spectrometer

(IMS) is being developed for use as a flight instrument. The IMS is an

ion reaction chamber coupled with an ion drift tube, all operated at or near

a pressure of one atmosphere. Reactant ions, produced by the action of a
radioactive source on the carrier gas, ionize sample molecules in the

reaction region. Both reactant ions and any resultant product ions are

admitted into a drift region through an ion gate. An electric field moves

the ions through the drift region against the flow of a drift gas. The ions,

separated by differences in structure and charge distribution, are detected at
the end of the drift tube by a collecting electrode. The resultant ion

intensities versus drift time data, the IMS spectra, are used to identify the

sample. Fig. 2 shows an analysis of a mixture of ten hydrocarbons at

concentrations in the low ppm range using the mini-CIDEX breadboard

GC. The chromatogram in the center is the mini-MID response. Each

GC peak is further identified by the IMS spectra shown in the surrounding

boxes. This flight prototype IMS uses very high purity dry helium and

employs a reaction region / drift tube that is 2 x 10 era. Because

conventional IMS systems use air or nitrogen drift gas, a helium-based
IMS was a necessary development to enable compatibility with the GC

columns and MIDs that use helium. The dry helium also allows detection

of many molecules not previously detected by conventional IMS. 3
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Fig. 2. Mini-CIDEX GC-IMS analysis of a 10-hydrocarbon mixture.

3. PYROSENSORS

Chemistry experiments aboard the Viking mission to Mars suggested that there may be oxidizing agents in the surface sediments

of the planet. Such oxidants would be hostile to the preservation of organic matter and would thus inhibit the ability of

primitive life to survive at the surface. Also, they would be detrimental to the preservation of the chemical signatures of extinct

biota. Innovative solid-state sensors are being developed for a Mars flight instrument that would enable the detection of

hydrogen peroxide -- a candidate oxidant species. The detectors are based on the following principles. If a material has internal

electrical symmetry, it is generally neutral and lacks a permanent dipole. If it is asymmetric, e.g., water, it has a permanent

electric dipole. Most asymmetric materials in bulk have a zero dipole effect because of a random or self-cancelling arrangement.

Some asymmetric materials, however, maintain a net dipole orientation even in bulk. Heating such a material (within limits)

does not randomize the dipoles, but instead rotates them in unison and thus produces a polarization.4, 5-6 Because this occurs in

the absence of an external electric field, it is called a spontaneous polarization. A spontaneous polarization which is induced by

heating is called the pyroelectric effect. In a pyroelectric device, a change in temperature creates a change in polarization. A

pyroelectric device thus produces current only as it experiences a temperature change. When it _sat a constant temperature, no

current is produced.

A thin film of a pyroelectric material which has electrodes deposited on both faces is a pyroelectric sensor or pyrosensor. The

electrodes gather charge, and because the material is a very good dielectric, the charge is unable to leak through the thin film. In



itssimplestform.the pyroelectric sensor is both a charge capacitor and a charge generator. There are two approaches using the

pyroelectric principle for determination of chemical compounds in solution. In the first approach, the heat generated by an
exothermal or endothermal chemical reaction is sensed by a pyrosensor. This allows for the continuous quantitative detection of

some substances. 7"8 An example of this is the determination of peroxide concentration using catalysis of enzyme-coated

polyvinylidene difluoride (PVDF). 9 PVDF film is commercially available and has outstanding pyroel-ectric response; a change
of one degree Celsius gives an output of about 3V for a typical thickness of 25 p.m. 10

The second approach involves the use of laser light. The sample absorbs energy from the laser and the heat generated travels to

the nearby sensor which is not in the path of the laser light. This heat creates an electric signal that is translated into an

analytical concentration. This technique has been demonstrated for coccine, B-carotene, MnO4", Cd and Fe complexes which
have all been excited by a laser and analyzed using pyrosensors.ll This technique also has been applied to measurements of

phosphorus (as PO4 -3) and nitrogen (as NO3-) concentrations in natural waters. In the case of phosphorus, a detection limit of
about 2 ppb was obtained. 12

E
n
O.,

v

t-
O

,,,-,,

t-

o
t-
O
(9

400

300

200

100

Y= 5.03X

0 10 20 30 40 50 60 70

Peak Height

Fig. 3. Detection of hydrogen peroxide with the pyrosensor.

We have applied these

approaches and design to
construct our own

pyrosensors. 13 The sensor

provides a very stable

baseline, and demonstrates

that hydrogen peroxide
concentration can be

determined from 40 to 300

ppm with a reasonable

calibration curve, as shown in

Fig. 3. In recent collabor-
ation with H. Coufal of IBM

Almaden Research Center, the
sensor was shown to be

sensitive to 100 nJ of energy.

Using this sensor, hydrogen

peroxide concentrations can be

detected as low as 1 ppm in a

50 I-tL sample size with 300

mV signal amplitude (a 30

mV signal can be obtained

at 0.1 ppm level).

4. X-RAY INSTRUMENTATION

The X-ray instrument 14,15 under development is being designed primarily for Mars exploration and will provide a general

compositional survey of both rock and soil materials at the surface of the planet. The instrument will utilize a Charge Coupled

Device (CCD) detector to provide simultaneous X-ray fluorescence (XRF) and X-ray diffraction (XRD) data, thus enabling the

acquisition of both geochemical and mineralogical information from the same sample. These data will address exobiology

questions regarding the ancient hydrology of the planet through the detection of minerals and elemental abundances associated

with evaporating ponded water, volcanologically-associated hydrothermal activity, and aqueous weathering processes.

To accommodate the mass, volume, ruggedness, heat flow, and power consumption constraints imposed by pending Mars

missions, the X-ray instrument will utilize highly compact engineering configurations with miniaturized, solid-state components

wherever possible. To accommodate the operational constraints of the lander platform (e.g., immobility or limited sample

acquisition capability), the X-ray instrument is being designed to conduct analyses without the need to acquire a sample, or



makeanypreparationsoftheanalyzedmaterialwhatsoever.Normally,X-raydiffractioninstrumentsrequirepowderedmaterials
foranalysisinordertorandomizethesignal.Incontrast,thisdevicewillsimplybepressedupagainstarocksurfaceorpressed
intothesoilinordertoconductananalysis(takingtypicallyonehourperanalysis).

Developmenteffortshavefocusedon1)dataanalysistechniquesandsoftwaredevelopmentforacquisitionof simultaneousXRF
andXRDdatafromthesingleCCDdetector,2) innovativedesignconfigurationsof theX-raygeometryto enablecontactor
proximalpositioningbetweensampleandinstrument,3)definingtheanalyticalmethodsforextractingdiffractiondatafromnon-
powdered,solidrocksurfaces,and4)engineeringdesignstoruggedizeandminiaturizetheinstrument.

Infulfillmentofthisdevelopmenteffort,wehavefabricated(withARACORofSunnyvale,CA)abreadboardinstrument16with
compactsensordesignandenergy-efficientoperationalmethodsthatarecompatiblewiththeflightenvironment(Fig.4). The
deviceiscomprisedof anirontargetX-raytube,acadmium-109isotopicsource,andaCCDdetector.Duringoperationofthe
X-raytube,thediffractionpatternandthefluorescencespectrumof theelementsfromsiliconto chromiumarecollected
simultaneously.The10mCicadmium-109sourceproduces22.2KeVX-rayemissionthatwill excitetheK-shellemissionof
allelementsbelowruthenium(Z= 44)andtheL-shellemissionsthroughuranium(Z = 92).Diffractiondataandfluorescence
dataareseparatedintheCCDdetectorbycomputerinterrogationofthepixelarray;diffractioneventsaredetectedbypositionfor
energiesequalto"theprimaryradiation,whilefluorescenceeventsareidentifiedbytheirenergylevel.The X-ray tube has a

maximum power rating of 9 W to keep the diffraction measurement under 4.5 hours (duration of a martian night). The output of
the tube was filtered with a manganese K-edge filter to create an essentially monochromatic iron X-ray beam for both diffraction

and fluorescence.

The CCD and the X-ray tube are configured in a non-scanning powder camera geometry with a radius of 3.8 cm. The CCD has

a 512 x 512 array of 27 ktm pixels. The CCD in current use does not have sufficient size to cover the desired angular range

(corresponding to crystallographic d-spacings from 1.5 to 20 A), and so the CCD is repositioned manually (a 1024 x 1024 array
would suffice and will be incorporated in the near future). Although the breadboard utilizes powdered samples, we have

demonstrated with commercial diffractometers that mineral identification can be accomplished on solid, unprepared materials.

The breadboard is currently being reconfigured to include this capability.

Fig. 4. X-ray instrument breadboard.



5. STABLE ISOTOPE LASER SPECTROMETER

A tunable diode laser spectrometer capable of accurately measuring isotopic ratios in soil samples is also being developed at
Ames Research Center. This instrument, the Stable Isotope Laser Spectrometer (SILS),17,18,19 will be able to measure

isotopic ratios of carbon and oxygen in martian soils and rocks without the extensive gas purification procedures required in the
conventional mass spectroscopic method. The study of the variations of the isotopic ratios 13C/12C and 180/160 on Earth has

provided important information about Earth's biological and geological history. Similarly, the 13C/12C ratio may provide clues
about an extinct martian biota and its influence on the planet's atmosphere and surface chemistry. The isotopic ratio 180/160 in

carbonates on Mars might be able to determine the temperature at which the carbonate was formed. This would provide a

method of elucidating the thermal history of the planet's surface, a very important factor in assessing the ability of Mars to

engender and support life. The SILS instrument, when on the surface of Mars, possibly in a robotic rover vehicle, will have the

capability to perform step-wise pyrolysis of rock and soil samples retrieved from the planet's surface and accurately analyze the
resulting carbon dioxide gas for its carbon and oxygen isotopic composition.

In order to assure meaningful and useful isotopic data, such measurements on Mars should be made to an accuracy of 0.1% or
better. The differences in abundance for the isotopes of carbon (and oxygen) are large, resulting in significant differences in the

absorbance of the various isotopic spectral bands. This absorption mismatch makes accurate measurement of the 13C/12 C and

180/160 isotopic ratios difficult. To overcome this difficulty, Wall, et al. 20 proposed to make absorption measurements of

individual rotational lines in a spectral region where the v 3 rovibrational bands of the isotopes overlap, and certain closely

spaced isotopic absorption lines have approximately equal absorbance, thus minimizing measurement errors. A set of

overlapping bands containing a group

of isotopic spectral lines from
12C160160, 12C180160, and
13C160160 can be used for

measuring ratios of both oxygen and
carbon isotopes (Fig. 5). Other lines

are visible in this region, including
one from 12ct70160 which,

although separated from the
12C ! 60160 line by only 0.02 cm" I,

is readily resolved because the laser
linewidth is more than two orders of

magnitude narrower than the gas

absorption line.

The latest version of SILS is a four-

beam, table-top instrument allowing
simultaneous measurement of a

sample of unknown isotopic

composition, a known reference,
measurement of the laser output, and

a germanium etalon for frequency
calibration and linearization. The
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Fig. 5. Transmittance spectrum of CO2 in the 2310 cm "1 region of the

v3 vibrational bands showing absorption lines for various isotopic species.

light source is a buried heterostructure-type tunable diode laser fabricated using the molecular beam epitaxy (MBE) technique and

composition-tuned to operate in the 2280 to 2380 cm "1 spectral region. Although the present laser operates continuous-wave at

temperatures only up to 120 K, commercially available lasers 21 now operate at temperatures higher than 200 K, close to the

average martian surface temperature. The instrument has not yet been miniaturized, but developments have been made with
anticipation of eventual miniaturization; the laser light source and the detectors are lightweight, rugged, low power, solid-state

devices which inherently lend themselves to instrument miniaturization. The pyrolysis oven and gas handling systems are

similar to those developed for other space flight missions. Thus a miniature, reliable, lightweight instrument can be assembled

and flown to accurately measure isotopic ratios on Mars. Isotopic ratio measurements for both t3C/12C and 180/160 have been

made to a precision and accuracy of 0.1% and 0.2% respectively, values sufficiently small to provide important information for

exobiologists, geologists, and planetary scientists.



6. DATA ANALYSIS TECHNIQUES

Concurrent with our instrument and sensor work, signal processing techniques are being developed to increase the amount of

information obtained by analytical instrumentation onboard spacecraft under the time and data-rate restrictions imposed by

missions. Development of these techniques goes hand in hand with the hardwate development described in this paper. For

example, techniques such as Fourier-transform analysis have been used to recover the chromatograms generated from Multiplex

Gas Chromatography (MGC). Such computations allow the utilization of MGC to monitor changes in the composition of a

sample while it is being acquired. The data analysis techniques developed have improved the dynamic range of MGC. One of
the techniques being investigated at present utilizes the maximum entropy method; in this technique a model chromatogram of a

given sample is computer-generated to create a "template." This template is compared with the actual GC output and the

statistical significance of the approximated template is determined. This procedure is repeated with other templates until the one

with the highest statistical confidence is produced. Such data analysis techniques and refinements will add a significant measure
of analytical power and confidence to data returned from space-flight instruments.
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In-situPolymerizationPLOTColumnsI:Divinylbenzene
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i Abstract
i I

A novel method for preparation of porous-layer open-tubular

(PLOT) columns I= described. The method Involves • simple

end reproducible, Mraight-forward In41tu polymerization of

monomer dlrecUy on the metal tube.

Introduction

In this paper, I describe a novel method for preparation of a
porous-layer open-tubular (PLOT) column. This method uses
straight-forward in-situ polymerization of monomer during the
coating of the inside of the metal column. It is simple, repro-
ducible, efficient, and eliminates many of the steps needed for
conventional PLOT column preparation.

PLOT columns offer many advantages compared to packed or

wall-coated gas chromatography columns (1-5). At this time, all
PLOT columns are made either by static coating procedures
(1,6,9), by dynamic coating procedures (1,10-12), or by a com-
bination of static and dynamic coating procedures (! 3). In general,
existing methods require that polymerization of monomers takes

place in the first step. Polymers are then sieved to recover the size
required for packing in columns. These methods are complicated
and require special expertise and facilities. These difficulties and
the resulting high cost have limited the application of PLOT
columns. The method described in this paper accomplishes the
polymerizationandthecoatingofthecolumnsurfaceinthesame

step.The in-situpolymerizationprocedureallowsforsu'alght-for-

ward preparationofa PLOT column inmetaltubing.The im-

portantrequirementinthistechniqueisfindingasuitablesolvent

systemthatprovidessuspensionpolymerizationofthemonomers
anddoesnotswellthepolymerstoany extent.The primaryob-

jectiveofthispublicationistodemonstratea new method for

preparingpolymericPLOT columns.

Experimental

Materials. 304 stainless-steel thin-wall tubing was used be-
cause of its low cost and the suitability of its surface properties.

The tubingdimensionswere 0.03-in.i.d.x 12-ftlongwitha
0.005-in.wallthickness.The tubingwas washed with hy-

drochloricacid(20%),distilledwater,methanol,and acetone,

and driedwithnitrogensweep.

Chemicals.Divinylbenzene(95%) was obtainedfrom Dow

Chemical,azobisisobutylronitrile(AIBN) from PolyScience,
methanolfromJ.T.Baker,andacetonefromAldrichChemical.

Procedure.A mixtureofmethanol(3.010g),divinylbenzene

(0.543,0.760,or1.02g),andAIBN (0.034g)was addedintothe

dried,coiledtubingthrougha glassfunnel.Both ends ofthe

tubing were cappedwith stainless-steelendcaps.The coil was
slipped over a hollow metal cylinder and placed in an oven
equippedwith a mechanical rotation rod. The reaction tempera-
turewas setat80°C.The coilwas rotatedat15rpm.After7h,the

coilwas cooledtoroom temperatureand bothendswereopened.

The solventwas expressedwith nitrogenata low pressureof

10-20 psi.Afterthesolventwas completelyeliminated,the

columnwas conditionedat180°Cforlongerthan12h.
Gas chromatographicevaluation.The column preparedfrom

thein-situpolymerizationmethod was installedina gaschro-

matographwitha thermalconductivitydetector(TCD).Helium

carriergaswas utilizedtodemonstratetheseparationofthegas

mixturecontainingNe (5760ppm),CI'14(528ppm),CO2 (I060

ppm), andN20 (1580ppm).The gasmixturewas firstinlroduced
intoa I-IJLloop,and thenitwas injectedontothecolumn for

analysis.The flowratewas 4.8mI.Jmin,and theoperationtem-

peraturewas 26°C.

Results and Discuulon

The PLOT columnspreparedfrom in-situpolymerizationgive

verygood separationoflightgases,asdemonstratedinFigureI.
As thedivinylbenzeneconcentrationincreases,the separation

efficiencyalsoincreases.At a divinylbenzeneconcentrationof

25%, the separation efficiency of the PLOT column is almost as
good as the packed column. Four columns were prepared and
rested for reproducibility. The results are 34.3, 35.6, 34.8, and 34.7
for the capacity factor of N20 with the respective number of
plates at 4096, 4065, 4081, and 4088. The advantage of the PLOT
column is that a lower concentration (ppb) and smaller sample can
be detected using highly sensitive detectors than with a packed
column. This is very important to a space mission.
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In the course of this investigation, several solvents other than

methanol were tried as diluents, e.g. ethanol, isopropanol, methyl-

ethylketone, ethylacetate, tetrahydrofuran, and heptane. In all

cases except methanol, the columns became plugged, or the so-
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lidified polymer was extruded as solid cylindrical fragments

(Figure 2). Only when methanol was used did the polymerization

and coating of the wall occur in a way that the excess diluents

could be easily expressed from the column, leaving the poly-

merization products coating the wall of the

tube. The speed of the rotation of the cylinder

in the oven was also investigated. It was found

that the slow rotation was necessary for suc-

cessful coating as a much higher rotation rate

led to column plugging. While columns longer

than 12 ft have been successfully made (for

example, 15 ft), much longer columns have

not been investigated using this technique.

This technique has been found to be repro-

ducible, and as indicated in Figure I, some

flexibility in the concentration of the poly-
merizable monomer in the mixture is allow-

able. Further investigation using the technique

is being carried out with different column ma-

terials, i.e., nickel and Teflon ® tubing.

Because it is already known that different

monomers or monomer mixtures lead to poly-

mers giving a wide variety of compound sep-

arations, various polymerizable monomers and

monomer mixtures will be investigated using

this new technique.
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FIl_m 1. Separationof somelight gasesusingvariousDVBPLOTcolumnsanda packedcolumn.
( all columnsoperatedat 26°C and 4.8 mL/minflow rate)

Conclusion

A new method to prepare PLOT columns

was developed. This method is so simple and

reproducible that it may be very useful in

preparing other types of PLOT columns.
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